Challenge Problems 2

Jacob Terkel

November 29, 2021

Problem Index

Problem	1	2	3	4	5	6	7
Difficulty/10	3.5	6	1	4	10	6	7.5
Category	LG	NT	GM	AL	CO	NT	CO

Key:

- NT: Number Theory
- CO: Combinatorics
- LG: Logic

- AL: Algebra
- GM: Geometry
- 1. Let $\exists !!(x,y), P(x) \land P(y)$ mean that there are two distinct values of x and y such that the predicate P holds. Express this using standard set notation, logic, and the existence and universal quantifiers (but not the uniqueness quantifier).
- 2. Consider the Diophantine equation $7x^3 + 3y^2 = z^2$. Prove that x, y, z are divisible by 7.
- 3. Determine the minimum number of lines required to partition a convex *n*-gon that lies in \mathbb{R}^2 into triangles.
- 4. Let $\mathbb{Z}_p[X]$ be the ring of polynomials with coefficients in \mathbb{Z}_p for prime p. Determine the group structure of $(\mathbb{Z}_p[X]/(X^2 + X))$ (ie. find a more common group that this is isomorphic to.)
- 5. Let G be a finite Abelian group with order 9 or greater. Prove the following:

Theorem 1. \mathbb{Z}_3^2 is a subgroup of G if and only if there exists some $S \subseteq G$ where |S| = 8, such that one of the following holds for every 3-subset of S, A.

- $0 \in A$
- $\{a, -a\} \subset A$, and $a \neq -a$.
- $\{a, b, c\} = A$ and a + b + c = 0
- $\{a, b, c\} = A \text{ and } a + b = c \text{ (WLOG)}$

Feel free to ask for a hint on this one! It is far from easy!

6. Prove that there is no Gaussian integer α for which

$$|(\mathbb{Z}[i]/(\alpha))^{\times}| = 68$$

7. For a finite Abelian group G, let ρ_G be the minimum size of S_2 where S_2 is the set of all possible sums of two distinct elements in S, where S is some subset of G with cardinality 7. Prove that ρ_G is never more than 11.

The use of a computer is highly encouraged for this problem!