Challenge Problems 2

Jacob Terkel

November 29, 2021

Problem Index

Problem	1	2	3	4	5	6	7
Difficulty $/ 10$	3.5	6	1	4	10	6	7.5
Category	LG	NT	GM	AL	CO	NT	CO

Key:

- NT: Number Theory
- CO: Combinatorics
- LG: Logic
- AL: Algebra
- GM: Geometry

1. Let $\exists!!(x, y), P(x) \wedge P(y)$ mean that there are two distinct values of x and y such that the predicate P holds. Express this using standard set notation, logic, and the existence and universal quantifiers (but not the uniqueness quantifier).
2. Consider the Diophantine equation $7 x^{3}+3 y^{2}=z^{2}$. Prove that x, y, z are divisible by 7 .
3. Determine the minimum number of lines required to partition a convex n-gon that lies in \mathbb{R}^{2} into triangles.
4. Let $\mathbb{Z}_{p}[X]$ be the ring of polynomials with coefficients in \mathbb{Z}_{p} for prime p. Determine the group structure of $\left(\mathbb{Z}_{p}[X] /\left(X^{2}+X\right)\right)$ (ie. find a more common group that this is isomorphic to.)
5. Let G be a finite Abelian group with order 9 or greater. Prove the following:

Theorem 1. \mathbb{Z}_{3}^{2} is a subgroup of G if and only if there exists some $S \subseteq G$ where $|S|=8$, such that one of the following holds for every 3 -subset of S, A.

- $0 \in A$
- $\{a,-a\} \subset A$, and $a \neq-a$.
- $\{a, b, c\}=A$ and $a+b+c=0$
- $\{a, b, c\}=A$ and $a+b=c$ (WLOG)

Feel free to ask for a hint on this one! It is far from easy!
6. Prove that there is no Gaussian integer α for which

$$
\left|(\mathbb{Z}[i] /(\alpha))^{\times}\right|=68
$$

7. For a finite Abelian group G, let ρ_{G} be the minimum size of S_{2} where S_{2} is the set of all possible sums of two distinct elements in S, where S is some subset of G with cardinality 7. Prove that ρ_{G} is never more than 11.
The use of a computer is highly encouraged for this problem!
